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Extended Class of Metric Tensors in Relativity 
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An extended "metric" tensor that is a function of an internal vector ya (x) leads 
to a spin-1 massless field of  gravitational origin. It is shown that this new field 
vanishes in the linear approximation for the extended "metric." 

1. I N T R O D U C T I O N  

In general relativity, that is, in a four-dimensional Riemannian space- 
time, the metric is a symmetric second-rank tensor which is a function of  
the coordinates x"  and is a solution of Einstein's field equations. Associated 
to the metric there exists a field of  local vierbeins e~(x), such that locally 
the metric becomes Lorentzian. In this paper  we use the following notation: 
Latin indices indicate internal, or tetrad indices, and Greek indices indicate 
space-time degrees of  freedom. Both vary from 0 to 3. 

Here we propose a generalization of this geometrical structure such 
that the "metr ic"  becomes a function of an internal vector field ya(x). By 
internal vector we mean an aggregate of  four real space-time functions, in 
a Riemannian space-time, which transform under the action of  local S0(3, 1) 
transformations similarly to the field of  local vierbeins. It should be men- 
tioned that extended "metrics" of  the form g,~(x ~, y~(x))  have been con- 
sidered in Finsler geometry (Cartan, 1934; Horvath and Gyulai, 1956; 
Matsumoto,  1971; Ikeda, 1979). However, here we consider the y 's  as the 
components  of  an internal vector, that means, they depend on the y~ through 
the combination ya =y~e~. Besides this, the results derived in this paper  
are different from those valid for the Finsler geometry. 

In general, we consider geometrical objects of  the form T~.-.(x, y), 
where y = (ya(x)) ,  such that the "metr ic"  g~(x, y) becomes a particular 
case of  this general set of  objects. 
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In Section 2 we define the full covariant differential A g~,,(x, y) of the 
(f) 

"metric," and determine the metrical conditions. The definition of  these 
metrical conditions implies the existence of  a space-time vector dpp(X). It 
may be shown that associated with this new vector field there exists an 
internal transformation of  the form 37 = Ay such that the variation &bp takes 
the form 

o 
&bp = In A 

axp 

in analogy with the gauge transformation of  an electromagnetic potential. 
In the Section 3 the curvatures associated to the several covariant derivatives 
are determined. One of  these curvatures has the form Fpa = 20[a~bp], such 
that 8FpA = 0 under the previous dilatation transformation of the ya. Thus, 
the Fpa may be interpreted as the field strength associated to ~bp. In Section 
4 the properties of  this new vector field are discussed, and a Lagrangian 
density for the system g,,,(x) and ~bp(x) is suggested. Finally, in Section 5 
we consider the weak field approximation for the potentials g,~,(x) and 

2. THE METRICAL C O N D I T I O N S  

Consider the class of  functions T~Z(x, y). The differential o f  such 
quantities is given by 

: f p oF::: oyb 1 dT~L: 
L\ /ox  

dx ~ ay b ~xxJ 

(The symbol "exp"  denotes the explicit derivatives with respect to the 
coordinates xP.) 

In this expression only the term containing the derivatives of T~7. with 
respect to yb transforms as a collection of  internal tensors. The remaining 
terms need to be corrected in order to obtain a covariant expression under 
SO(3, 1) transformations. With this in mind, we introduce a full covariant 
differential under internal transformations, according to the expression 

. . . . .  [,r .... -aT~ L ]dx  p ATe...- ~...Io" oyb Y~p 
(0 

(1) 

We recall that local SO(3, 1) transformations are those associated with 
pseudo-orthogonal internal matrices L = (L'~(x)). The two types of covariant 
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derivatives in equat ion (1) are defined by 

=(or::..] +raborX:: (2) 
T~2..lo \ 0 x~ ]exo 

b 
b Oy +,-,b c -~176 Yllo = 0-~  r.cpy (3) T ~ . ) . r l o -  o y b  

The connect ion  F o is associated with the local S0(3, 1) t ransformations.  
Here this connect ion  appears  as the correction factor  corresponding to the 
derivatives (OoT~;.'-.)ex p. Using an analogy with the Finsler geometry we 
associate with the term Ooy b another  connect ion denoted  by F o. However,  
since this choice is merely an analogy, and since both  Fp and Fp t ransform 
similarly under  local S0(3,  1) t ransformations,  3 we necessarily have that 
the difference F o - F  o is an internal tensor. This tensor will be denoted  by 
T o. Thus, expression (1) gives the definition o f  a covariant  internal derivative 
for the class o f  functions T~'2.(x, y) in a Riemannian  space-time. [By the 
term Riemannian we mean  the space with metric g ,~(x) ;  it should be noted 
that  here the meaning  of  the term Riemannian has a weaker sense since the 
metrical condit ions are not  yet determined.]  

Fol lowing an analogous  process one may introduce a full covariant  
differential by  replacing Tadi.'.lp by T~.-.;o and A by A ,4 where 

(i) (f) 
a... a... A a... 

T tx...;o = T ~...Ip -- ['~.~o T x... 

and assuming that Fp and F o are a set o f  world vectors. The quantities fl.A,o 
indicate the components  o f  the space-time connect ion.  The explicit value 
for fl  will be derived f rom the metricity conditions.  

We use the opera tor  notat ion 

A = dxO Do 
(f) 

For  instance, for  the extended "metr ic"  G~(x,  y)  we have 

_ 3 g ~  a b Dpg~(x,y)=g~;O t~y~  r.boy + _ _ y ~  (4) 

a... 3Th i s  is necessary since we have assumed that A T~...(x, y) transforms as an internal vector 
under local Lorentz transformations, viz. (o 

'a... t A T~...(X, y ) = L~'b(x)A Tb'.'.'.(X, y)  
(0 (i) 

y ' = L . y  

4 W e  r e m i n d  t h e  r e a d e r  t h a t  u n d e r  c o o r d i n a t e  t r a n s f o r m a t i o n s  t h e  y " ( x )  b e h a v e  as  a se t  o f  

scalars. Therefore in the definition ofYl~ o both factors on the right-hand side are world vectors, 
assuming as usual that Fp is a collection of world vectors. 
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Presently, we will take g~(x, y) of the form 

g.~(x,y) = a b eu~(x)e~,(x)o.,ab(y) (5) 

The e~(x) indicate the field of vierbeins. The expression (5) differs from 
the conventional formula giving the metric g,~,(x) only by the factor a, ab(y) 
which substitutes the local Lorentzian metric r/ab. 

In what follows we will postulate the following values for w and ~': 

O-'ab(y) = ~abq'(Y) (6) 

r.%p = -- ~ ~, 4'o (7) 

From equations (5) and (6) we get 

g.~(x, y) = ~O(y)g.~(x) (8) 

Thus, g ~  (x, y) may be looked as the result of an active "conformal transfor- 
mation" on the metric g.~(x), induced by the field y(x). We may say that 
the space with "metric" g.~(x, y) is "conformally Riemannian." Replacing 
expression (8) in equations (4) we get 

, , [ a q ,  o 0 q ,  o ,  
Dog~..(x,Y)=qJ(Y)g~..;o(x)+g~tx)~y~Yla-~y.Y *oJ (9) 

In these equations we have made the supposition that 12(x, y) = 12(x). 
Consequently g~:o(x) corresponds to the covariant derivative associated 
with space-time coordinate transformations. We mentioned that these condi- 
tions on the connection fl are valid for the Christoffel symbols associated 
with the explicit dependence on the coordinates x * of the metric g~(x, y) 
given by (8). 

We now impose that ~0(y) is homogeneous of the first degree in the 
variable y~: 

. O~0 
Y 0-~ = 0 (10) 

Accordingly, equations (9) may be written as 

Dog.~(x,y)=O(y ) g . ~ ; o ( x ) + g ~ ( x ) [ ~ y l o - d ~ o  (11) 

In the definition of the metricity conditions we may use two possibilities: 
(a) The derivatives Dog~(x, y) determine a Weyl field kp according to 

Dog.~(x , y) = kog~(x , y) (12) 

Then, 

g~.~;p(x) = ( k o - Ao)g.~(x) (13) 
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where 

O(ln 0) a 
Ap- ~ Ylp-r 

However, such Weyl field in the equation (13) depends on the quantities 
k o and ep which are not related to each other. Thus, such interpretation 
contains two vector fields and a scalar field which are not determined. 

(b) Another possible choice, which avoids the presence of undeter- 
mined quantities, is to take the space-time affinity as the Christoffel symbols 
associated to the explicit dependence of g,~(x ,  y)  in the coordinates x a. 
This choice is consistent with equations (9). Along with such definition we 
also take k o =0 .  Accordingly, from equation (13) one gets A o = 0, which 
implies that 

0(ln q~) 
(ao - Oya Yt; = d~o(x, Y) (14) 

Thus, the field Cp becomes a function of the vector ya which belongs 
to the internal space associated to a Riemannian space-time since the 
conditions g~,~;p(x) = 0 hold. In what follows we shall use the equation (14) 
for the definition of the field r From equations (8) and (10) it follows 
that g~,~(x, y )  is homogeneous of the first degree in the variables ya. This 
result implies that the present approach is different from the method used 
in the Finsler geometry. 

Consider the transformation, in a fixed space-time point and for a fixed 
Lorentz frame 

oA 
q~(jT) = A (y) ~b(y), y 0 - 7 = 0  (15) 

);~ = •y~ ~ b  = nab 

It is possible to show that the Cp of (14) transforms according to 

4~ o = ~b o 4 0(ln 0) (16) 
Ox ~ 

The internal connection F o has the usual value used in general relativity, 
a 

determined from the metrical conditions on the vierbeins: e , :~=  0. Thus 
both f~ and F are independent of  the quantities ya. Consequently these 
connections are invariant under the transformation (13). From this result 
it follows that the internal connection Fo, under the action of the transforma- 
tion (15) undergoes an Einstein A transformation. These results imply that 
the corresponding curvatures are invariant under the transformations (15), 
and consequently the gravitational field is presently described by Einstein's 
Lagrangian density differently from what occcurs in the Weyl theory. 
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3. THE CURVATURES 

For the connections {l and F the curvatures are R~t3, the Riemann 
tensor, and P~t~ = (R.~b~t3), similarly to what occurs in general relativity. For 
the determination of the curvature associated to Fp we use the formula 

f l  
YI~p = Y ~  + r~.dpY d = Ylf, - chpY ~ 

Since this equation may be written in a form similar to the minimal 
electromagnetic interaction 

yl~o = "rrpy ~ + Faboy b, "lrp = Op -- gbp 

it follows that the corresponding curvature may be given by the expression 

(Yl~o)lA -- (YlT~)lo = P~-bo~Y b -- FoAY ~ + c~Yl5  -- c~.Yl~ 

a b a a 
= Q.bo;tY + c~Ylp  -- r (17) 

with 

Fp~ = 0h ~bp - 0pthA (18) 

Owing to the conformal invariance of ~ and F under the "conformal 
transformations" (15) the corresponding curvature tensors are also "confor- 
mal invariant." A direct inspection in equations (17) and (18) show that 
the curvature Qp~ is conformal invariant. This conclusion also follows from 
the fact that the connection Fp changes under "conformal transformations" 
according to an Einstein A transformation. 

As it is well known the Ricci tensor and the scalar of curvature of the 
Riemann tensor may be written in function of  the curvature P~t3 as 

Ruo_  - -  c a ~vJ t  .bl~o'~ ,~ C a  ~ u ~ , b ~ a  

For the curvature Q~,  which is given by the expression Q ~  = 
P ~ -  F ~ . I ,  the corresponding Ricci tensor and scalar of curvature are of 
the form 

S ~  = R ~  - F~o, S = R (19) 

4. THE LAGRANGIAN DENSITY 

According to the present method, the connection F o differs from the 
conventional S 0 ( 3 ,  1) connection Fp by the object -1.4)p. From the metrical 
conditions which have been chosen, the vector field ~bo is given by equations 
(14). These equations show that ~bp differs from the expression of a pure 
gauge potential owing to the presence of Fp in the derivative Yt~- This shows 
that this potential is of  gravitational origin. From the expression of the 
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curvature Qpx we see that there exists a nonnull component  of  the curvature 
associated to Fp which is given by equations (18) and has the structure of  
a field strength associated to ~bp. 

Thus, the quantities ~bp and Fp~ are essentially of  geometrical nature. 
Indeed, if we make Fp ~ 0 (no gravitation is present, or it may be neglected), 
we get Pp~ --> 0, Fp~ ~ 0, and consequently both the Riemann tensor and the 
curvature Qp~ vanish globally. The presence of a component  of the curvature 
with the structure of  a field strength suggests as we already referred to 
above, that the quantities ~bp should be interpreted as potentials. This 
conclusion is further substantiated by the fact that 4~p depends on Fp, which 
is a quantity of  importance in the dynamics of  gravitation according to the 
previous argument. However,  if we try to construct a Lagrangian density 
based on the curvature Qp~ such Lagrangian has to be at most quadratic 
in the curvature. Indeed, it is not difficult to show that 

Tr(QP~ = R'~'P~Rc,~,p,r - -  4Fpo-F ~ (20) 

whereas an expression linear in Qp~ will contain no information on gravita- 
tion, s or the scalar of  curvature associated to Qp~ has the conventional 
Riemannian expression. 

Gravitational Lagrangians quadratic in the curvature are known in the 
literature, but presently we will use a simpler expression which has a formal 
analogy with the Einstein-Maxwell Lagrangian density: 

= , / F - g (  x ) ]l/2 R + x ) ]'/2 (21) 

This expression differs from the Einstein-Maxwell  Lagrangian owing 
to the fact that here Fp~ is of  gravitational origin. Indeed, for the Einstein- 
Maxwell system it is well known that the vanishing of the components  of  
the Riemann tensor implies in the vanishing of the components of  the 
electromagnetic field strength, but the converse is not true. For the spin-1 
field presently considered, this result and the inverse proposition can be 
obtained purely in geometrical form without appeal to the form of the 
Lagrangian. Indeed, if gravitation may be neglected, we may choose Car- 

a a tesian coordinates and set g.~(x)  = ~.~, l~ = 0 globally. Since then I .  = ~ 
it follows that F~ vanishes. From equation (14) we have that ~b~ = 
8(ln tp)/Sx ~ and as a consequence F.~ = 0. The converse is also valid: if 
F ~  = 0 we have that ~b. = c~x/dx ~, and from (14) this implies in F~ = 0. 

It is well known that this later result implies that the Riemann tensor 
vanishes. 6 Thus the curvature Qp~. cannot be dissociated in two distinct 
terms P.~ and F ~  which would assume independent values. 

5From the definition of Qp~, it follows that Tr Q~ = -4Fp~, and an obvious scalar formed with 
this expression by contraction with metric g~ vanishes. 

6In this case the vierbeins determine a field of parallel vectors (absolute parallelism). 
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5. T H E  W E A K  FIELD A P P R O X I M A T I O N  

Since both g ~  and 4~, are presently of  geometrical nature, any first- 
order approximat ion must be carried out simultaneously for these two 
quantities. In this section we want to verify if there will be a first-order 
contribution of  the potentials 4>, to the geometry of the system. 

It is natural to take  

OJ,,b(y) = ~7,~b + Xab(Y)  

with X,~b(Y) of  the first order. Since we also have the relation 

Wab(y) = ~,,btO(y) 

with q'(y) homogeneous of  the first degree in the ya. Then 

Xab = r/~b(ff -- 1) (22) 

The choice of  ~/,(y) is limited by the condition that it cannot depend 
explicitly of  the coordinates X ~'. Thus, it can be, at most, a pure function 
of  the ya and of  the constant tensor r/~b. Accordingly, we will take 

t~ = A~/(  ~Tcdy~yd) 1/2 (23) 

where A is a constant. 
We impose a first-order approximation in the components  y ~ according 

to 

y a ( x )  = C a + ~ a ( X )  

From (23) we obtain, up to first order terms in the ~", choosing the 
constant A by the relation A c  2= 1: 

c,~ a 
c2 (24) X ( Y )  = 1 4 - -  

Then, the tensor X,,b takes the form 

where 

c.~ 
Xab = '7.~ - 7 ( 2 S ) 

I" = c bl~.b 

h a b a = = C  h.b --cb(l~.b+lb. a) 

For the term giving the derivatives of  In ~O we have 

e (in ~,) = 1 cb er {1 cbr co 
ay"  '1' c 2 ay  ~ - \ - - - ~ - ]  c 2 
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T h e n  

~bp = ~:,p + l,p +�89 

In this expression we are denoting 

1 
U ~ ' - - C a U  u a = ( ~ " , l " , h  a ) 

Therefore, in the first-order approximation the vector ~b. is the gradient of 
a scalar function, and accordingly the field strength F.x vanishes. Any 
non-null effect of the field F.~ begins necessarily in the quadratic order. 

6. FINAL COMMENTS 

According to the expression ~'p = Op - ~bp, the potential ~bp has dimension 
L -1. Writing ~bp = kBp, and taking Bp with the dimension M1/2L1/2T -~ 
similarly to the dimension of the electromagnetic potentials, it follows that 
dim k = M -1/2 TL -3/2 = dim(e/he) where e is electric charge. The remaining 
quantities like ~p, y, and g~,(x, y) are taken as dimensionless quantities. It 
is simple to verify that the expression (12) giving the explicit expression of 
~bo has the dimension L -~, independently of the dimension chosen for 4' 
and ya. 
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